• 760µs/560Hz (tail rotor gyros only)
Price: $119.99

    Item #: DS95BLHV
    Availability: In stock
    Usually ships In the same business day

    Before adding this servo to your cart

    This 95oz-in servo is suitable for helicopter tail rotor applications only! This means neutral is 760µs instead of the 1520µs of servos connected directly to a receiver. Basically, a receiver's servo output sensitivity doesn't extend low enough to signal this servo - it responds only to gyro output.

    Note; while this unit is mini-size, because it's built with the standard size motor, it's nevertheless packing enough punch for 700-class models. The point being, don't be fooled into thinking because it's small it won't work in a larger model because it will.

    Note; we offer an M2S (mini-to-standard) adapter for fitting to a standard-size mount - https://www.promodeler.com/PDRSM2S

    As you look this servo over, one thing stands out. We've crammed a BL-frame motor into an M-size case. This means you can see some of the motor. This is because after CNC-machining a solid billet of 6061-T6 aircraft aluminum complete with cooling fins, next we slot the case to let the motor fit. Then we use 10 (ten) Allen head machine screws to secure the assembly together (instead of 4 like our competitors). We do this because it's more rigid and rigid is good because it keeps gear better aligned for longer wear and greater durability.

    Hidden within are dual ball bearings. But instead of ABEC-3 bearings, you get ABEC-9 because ultra high precision bearings offer better performance. These cost a little more, and we tell you about this because we're proud of what goes in your servo. of course, you also get metal gears. While the key to getting a servo's speed up is to use a lightweight hard anodized 7075 aluminum (25T) output gear, the balance of the gear train consists of steel gears for enhanced durability compared to an all-aluminum gear train as used by competitors. Added to which, our gears are wider (thicker) than usual because increasing the surface area means greatly reducing gear pressure, for improved wear characteristics.

    Better components. Better servos. The formula is simple. Decisions regarding what go into ProModeler servos aren't made in accounting to optimize price and profit, but in engineering. The reasonable price comes about because of a better business model that eschews the old way of doing things (importer + distributor + hobby dealers) because they all get a cut at your expense. With us you're smartly cutting out the middlemen by dealing direct.

    Note: operating voltage is 4.8-8.4V, but optimal performance is obtained with a 2S LiPo instead of a BEC. This is because LiPos deliver the required current without voltage spikes, noise, or otherwise adversely affecting the delicate avionics (25C or better is recommended). After all, synthetic orange colored Tang may have gone to the moon, but it doesn't compare to freshly squeezed orange juice. Same thing when it comes to feeding your avionics!

    Other Resources

    For detailed specifications and dimension drawings, select the Specs tab above. Also, there's an even-handed look at the competition in the Comparison tab. Meanwhile, TL;DR is chock full of nitty-gritty details so if you love delving deeply into stuff some find too tedious to read, don't overlook this tab.

    Note; if your gyro will function with a 1520μs servo, many pilots find our DS110CLHV an attractive offering because it outputs 110 oz-in at an über speedy 0.035sec/60° (so it's fast enough for tail rotor use) but so versatile you can re-purpose it by plugging it into a receiver also.

    To begin, take note of the fact this is a brushless servo. Lots of coreless servos look similar, but savvy modelers know how brushless servos are different - and better! What's confusing is they share nearly identical internal construction. In point of fact, technically, the both are 'coreless' motors. This, as compared to the workhorse of the industry - the FE-core 3-pole motor. The reason coreless motors are preferred for high performance application is the absence of an iron core, which means they accelerate faster. If you compete, you know a faster servo is super important.

    So what makes the brushless motor different from the coreless motor if they both have coreless-construction? One thing, it comes down to commutation, or how they turn the electromagnets that make them spin, on-and-off. Basically, a brushless motor has electronic instead of mechanical commutation. Mechanical commutation depends on brushes. in the case of miniature servo motors, the brushes are tiny little wires and they make and break the magnetic fields as they jump the gap between windings as the motor rotates. This technology is well over 100 years old. It's simple and reliable - to a point.

    Have you ever seen sparks when a motor is run at night? What you're seeing as sparks are what's created as the sharp edge of the brushes jump from field to field. They spark brightly as they jump the gap just like an arc welder sparks when the electrode makes contact with the surface being welded and current flows fast enough to melt the wire. And just like an arc welder consumes the electrode, over time minute bits of metal evaporate from the tips of the brushes. The higher the current, the greater the wear because each spark is bigger as the motor is loaded more, and more. Moreover, as the metal evaporates off the tip of the wire brushes, it doesn't disappear. Instead, it becomes tiny bits of metallic dust. Since servo motors are sealed, you can't see the sparks - and this also means the dust stays within the case. It accumulates, and no surprise to the engineers amongst you, it acts exactly like an insulator. This leads brushed motors to run hotter and hotter over time.

    Meanwhile, brushless motors run cooler - always - because a) there are no sparks creating heat, and b) because insulating dust doesn't accumulate internally. But the real benefit to you it this one. Brushless motors last longer because electrons don't wear out. How much longer? It varies with current but on average, a brushless servo motor last as much as 5X longer than a coreless servo-motor. Thus, even if your money grows on trees, brushless servo motors are what you want so don't be fooled by look-alike products equipped with coreless-motors!

    Overall Customer Rating of 1 Reviews:

    Giant performance in a tiny package


    This tail servo has giant performance in a tiny package. It has the torque, speed, and centering you need to make your model a top performer. I am very particular with servo purchases in regards to performance and this one meets my expectations. It’s also priced very reasonably. If you want high performance with a reasonable price, this one is a no brainer!

    - Mark Dean, Suitland, MD, Team Synergy